TECHNICAL CODE

DIGITAL TERRESTRIAL TELEVISION (DTT) - ACTIVE INDOOR ANTENNA (FIRST REVISION)

Developed by
Registered by

Registered date:

© Copyright 2022
Development of technical codes

The Communications and Multimedia Act 1998 ('the Act') provides for Technical Standards Forum designated under section 184 of the Act or the Malaysian Communications and Multimedia Commission ('the Commission') to prepare a technical code. The technical code prepared pursuant to section 185 of the Act shall consist of at least, the requirement for network interoperability and the promotion of safety of network facilities.

Section 96 of the Act also provides for the Commission to determine a technical code in accordance with section 55 of the Act if the technical code is not developed under an applicable provision of the Act and it is unlikely to be developed by the Technical Standards Forum within a reasonable time.

In exercise of the power conferred by section 184 of the Act, the Commission has designated the Malaysian Technical Standards Forum Bhd (MTSFB) as a Technical Standards Forum which is obligated, among others, to prepare the technical code under section 185 of the Act.

A technical code prepared in accordance with section 185 shall not be effective until it is registered by the Commission pursuant to section 95 of the Act.

For further information on the technical code, please contact:

Malaysian Communications and Multimedia Commission (MCMC)
MCMC Tower 1
Jalan Impact
Cyber 6
63000 Cyberjaya
Selangor Darul Ehsan
MALAYSIA

Tel: +60 3 8688 8000
Fax: +60 3 8688 1000
http://www.mcmc.gov.my

OR

Malaysian Technical Standards Forum Bhd (MTSFB)
MCMC Centre of Excellence (CoE)
Off Persiaran Multimedia
Jalan Impact
63000 Cyberjaya
Selangor Darul Ehsan
MALAYSIA

Tel: +60 3 8320 0300
Fax: +60 3 8322 0115
http://www.mtsfb.org.my
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee representation</td>
<td>ii</td>
</tr>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>1. Scope</td>
<td>1</td>
</tr>
<tr>
<td>2. Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3. Abbreviations</td>
<td>1</td>
</tr>
<tr>
<td>4. Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Active indoor antenna</td>
<td>2</td>
</tr>
<tr>
<td>5. Requirements</td>
<td>2</td>
</tr>
<tr>
<td>5.1 General requirements</td>
<td>2</td>
</tr>
<tr>
<td>5.2 Technical requirements</td>
<td>3</td>
</tr>
<tr>
<td>Annex A Normative references</td>
<td>8</td>
</tr>
<tr>
<td>Annex B Testing procedures</td>
<td>9</td>
</tr>
</tbody>
</table>
Committee representation

This technical code was developed by the Multimedia Broadcast Receiver Sub Working Group under the Broadcast Technology Working Group of the Malaysian Technical Standards Forum Bhd (MTSFB) which consists of representatives from the following organisations:

Sony EMCS Malaysia Sdn Bhd
Fraunhofer IIS
LG Electronics (M) Sdn Bhd
Maxis Broadband Sdn Bhd
Measat Broadcast Network System Sdn Bhd
Media Prima Berhad
Multimedia University (MMU)
MYTV Broadcasting Sdn Bhd
Samsung Malaysia Electronics (SME) Sdn Bhd
Sharp Electronics (M) Sdn Bhd
SIRIM Berhad
SmarDTV Global S.A.S
Sony EMCS Malaysia Sdn Bhd
Telekom Malaysia Bhd
Wideminds Pte Ltd
Foreword

This technical code for Digital Terrestrial Television (DTT) - Active Indoor Antenna ('this Technical Code') was developed pursuant to Section 95 and Section 185 of the Act 588 by the Malaysian Technical Standards Forum Bhd ('MTSFB') via its Broadcast Technology Working Group.

This Technical Code was developed for the purpose of certifying communications equipment under the Communications and Multimedia (Technical Standards) Regulations 2000.

Major modifications in this revision are as follows:

a) Inclusion of new frequency range of DTT receivers between 470 MHz to 694 MHz.

b) 3 antenna parameters which are passive antenna gain, suppression of unwanted signals and power consumption has been withdrawn.

c) Updated a new limit of antenna gain parameter between 6dBi to 20dBi

d) Clause title of directivity parameter has been changed to antenna pattern directivity and categorised as optional test.

e) Inclusion of new temperature range within +15°C to +35°C

f) Testing procedures for passive antenna gain and directivity in Annex B has been withdrawn.

g) Inclusion of new standard in Annex A, ETSI EN 303 354 and IEC 61000-4-2

This Technical Code cancels and replaces the MCMC MTSFB TC T014:2017, Digital Terrestrial Television (DTT) - Active Indoor Antenna.

This Technical Code shall continue to be valid and effective from the date of its registration until it is replaced or revoked.
1. Scope

This Technical Code specifies the minimum requirements for active indoor Digital Terrestrial Television (DTT) antennas. DTT reception quality depends on several antenna parameters which contains active electronic components to ensure the receiver receives the right DTT signalling in the frequency range of 470 MHz - 694 MHz, Ultra High Frequency (UHF).

2. Normative references

The following normative references are indispensable for the application of this Technical Code. For dated references, only the edition cited applies. For undated references, the latest edition of the normative references (including any amendments) applies.

See Annex A.

3. Abbreviations

For the purposes of this Technical Code, the following abbreviations apply.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>AUT</td>
<td>Antenna Under Test</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>dBi</td>
<td>decibels relative to an isotropic radiator</td>
</tr>
<tr>
<td>dBm</td>
<td>Decibel-milliwatts</td>
</tr>
<tr>
<td>DTT</td>
<td>Digital Terrestrial Television</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>Gp</td>
<td>Passive antenna gain</td>
</tr>
<tr>
<td>Gt</td>
<td>Total antenna gain</td>
</tr>
<tr>
<td>IM</td>
<td>Intermodulation</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IUT</td>
<td>Implementation Under Test</td>
</tr>
<tr>
<td>NF</td>
<td>Noise Figure</td>
</tr>
<tr>
<td>OIP3</td>
<td>3rd Order Intercept Point</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal-To-Noise</td>
</tr>
<tr>
<td>STB</td>
<td>Set Top Box</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultra High Frequency</td>
</tr>
</tbody>
</table>
4. Terms and definitions

For the purposes of this Technical Code, the following terms and definitions are applied.

4.1 Active indoor antenna

An antenna that contains active electronic components such as transistors, as opposed to most antennas which only consist of passive components such as metal rods, capacitors and inductors. Active antenna designs allow antennas of limited size to have a wider frequency range (bandwidth) than passive antennas, and are primarily used in situations where a larger passive antenna is either impractical (inside a portable radio) or impossible (suburban residential area that disallows use of large outdoor low frequency antennas).

5. Requirements

5.1 General requirements

Devices of indoor DTT antenna shall be designed not to cause interference with other authorised radiocommunication services, and be able to tolerate any interference caused by other radiocommunication services, electrical or electronic equipment.

The antenna shall be tested to comply with the applicable requirements stipulated in Clause 5.2 which the parameters are profiled in Table 1. The Antenna Under Test (AUT) shall comply with the test method specified in Annex B and parameters in Table 1.

5.1.1 Power supply

The equipment may be AC or DC powered. For AC powered equipment, the operating voltage shall be 240 V ±5 %, -10 % and frequency 50 Hz ± 1 % as according to MS 406 or 230 V ± 10 % and frequency 50 Hz ± 1 % as according to MS IEC 60038 whichever is current.

Where external power supply is used, e.g. AC adaptor, it shall not affect the capability of the equipment to meet this specification. Adaptor must be pre-approved by the relevant regulatory body before it can be used with the equipment. Adapter shall be subjected to test under tropical condition as specified in the related standard.

Typically, an active indoor antenna requires voltage and current of 5 V/50 mA (maximum). Alternatively, the power supply may be integrated in the Set Top Box (STB) or Integrated Digital Television (IDTV) with USB power.

5.1.2 Power supply cord and mains plug

If the equipment is fitted with power supply cord and mains plug, the power supply cord and mains plug shall be pre-approved by the relevant regulatory body with the following requirements before being used with the equipment:

a) The power supply cord shall be certified according to:

i) MS 2112-5 or BS EN 50525-2-11 or IEC 60227-5 (for Polyvinyl Chloride (PVC) insulated – flexible cables/cords); or

ii) MS 2127-4 or IEC 60245-1 (for rubber insulated - flexible cables/cords).
b) The mains plug shall be certified according to:
 i) MS 589-1 or BS 1363 (for 13 A, fused plug); or
 ii) MS 1577 (for 15 A, fused plugs); or
 iii) MS 1578 or BS EN 50075 (for 2.5 A, 250 V, flat non-rewireable two-pole plugs with cord for the connection of class II equipment).

5.1.3 Radio Frequency (RF) input connector
The RF input connector shall be complied to IEC 61169-2.

5.1.4 Marking
The equipment shall be marked with the following information:
 a) supplier/manufacturer’s name or identification mark;
 b) supplier/manufacturer’s model or type reference; and
 c) other markings as required by the relevant standards.

The markings shall be legible, indelible and readily visible. All information on the marking shall be either in Bahasa Melayu or English Language.

5.2 Technical requirements
In order to get the optimal DTT reception performance the following mentioned antenna parameters shall be complied. Each antenna model shall comply with the specified value range from each selected parameter as follows where the summary of technical requirements is listed in Table 1.

a) operating frequency range;

b) antenna gain;

c) Noise Figure (NF);

d) 3rd Order Intercept Point (OIP3);

e) return loss;

f) antenna pattern directivity;

g) temperature range; and

h) Electrostatic Discharge (ESD).

5.2.1 Operating frequency range
The indoor antennas for DTT broadcast service receivers shall operate in the frequency range 470 MHz - 694 MHz (UHF).
5.2.2 Antenna gain

The active antenna gain is defined as the sum of the passive antenna gain and the amplifier gain. The amplifier in an active antenna is primarily designed to overcome the coaxial loss by cable and should provide a sufficient gain margin of the total system gain. Deploying an active antenna allows placing an antenna remotely (with relatively long cable) as the antenna is powered conveniently over the same cable.

The RF output level of antenna shall not exceed -35dBm as stipulate in MCMC MTSFB TC T011 (Section A.6). The antenna gain shall be stable over the complete frequency band (470 MHz - 694 MHz) and the total antenna gain shall be 6dBi to 20dBi.

5.2.3 Noise figure (NF)

The low Noise Figure (NF) is an important performance characteristic of the antenna amplifier which in general, it is better than the front end of the STB to ensure the ability to receive weak stations is greatly improved.

NF is a measure of degradation of the S/N caused by noise contributed by components in the RF signal chain. Less noise contribution will produce a better S/N ratio at the output of RF signal chain.

The total noise figure \(F \) in a system is defined as:

\[
F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1G_2} + \frac{F_4 - 1}{G_1G_2G_3} + \ldots + \frac{F_n - 1}{G_1G_2G_3 \ldots G_{n-1}}
\]

where,

\(F_n \) is the noise figure of the n-th device.

This is the case when several devices are cascaded.

The illustration of an antenna with integrated amplifier connected to a STB is shown in Figure 1.

![Figure 1. System setup of the installation diagram](image)

The indoor antenna shall have a typical noise figure of \(\leq 1.5 \) dB.

5.2.4 Output 3rd order Intercept Point (OIP3)

Output 3rd Order Intercept Points (OIP3) specifications provide a useful figure for determining the degree of linearity exhibited by RF electronic devices/systems. The linearity of the system will be getting better when the OIP3 produce higher value, thus the RF domain will have better performance in regarding of spectral purity.
The OIP₃ is the theoretical output level at which the third-order two-tone distortion products are equal in power to the desired (wanted) signals. The calculation is based on the following equation.

\[
\text{IM}_3 = 3\text{Pout} - 2\text{OIP}_3
\]

where,

- \(\text{IM}_3\) is third order intermodulation level (dBm);
- \(\text{Pout}\) is single tone power at output (dBm); and
- \(\text{OIP}_3\) is output third-order intercept point (dBm).

The intermodulation (IM) products created in active components like amplifiers shall be kept as low as possible.

In order to achieve low IM products (-60 dBc), amplifiers with high OIP₃ are needed. Figures 2 and 3 show the result of two carriers when it applied to the amplifier. In Figure 2, each 1 dB increment at the input will increase the output carrier by 1 dB as well but the IM product will be increased by 3 dB. Figure 3 shows its measurement on a spectrum analyser. The distance between the wanted carriers and the IM products is called IMA should be as high as possible.

The UHF spectrum is more occupied by high RF level mobile telecom signals, thus more demands on linearity (OIP₃) of the antenna amplifier.

The amplifier shall be capable of handling signals with 0 dBm output level, and assuming that IM products are at -60 dBc.

\[
\text{OIP}_3 = \frac{(3\text{Pout} - \text{IM}_3)}{2}
\]

\[
\text{OIP}_3 = \frac{(3 \times 0 - (-60))}{2}
\]

\[
\text{OIP}_3 = 30 \text{ dBm}
\]

The indoor antenna shall have a OIP₃ level of ≥ 30 dBm.

5.2.5 Return loss

Antenna impedance and the quality of the impedance match are most commonly characterised as return loss. These impedance parameters are to measure value of the RF power supplied to the STB receiver reflects back to the antenna terminals.
For efficient transfer of DTT RF signals between an antenna and STB receiver the return loss should be ≤ -10 dB for 75 Ω system impedance.

The indoor antenna shall have a return loss of ≤ -10 dB.

5.2.6 Antenna pattern directivity

An antenna is a physical device that radiates or receives energy, almost always with some directional dependence. Theoretically, for efficient transfer of energy between two antennas, their respective radiation patterns shall be optimised in the correct direction and the antenna shall be polarised with the same orientation. However, in the real world, where Line of Sight (LOS) between two antennas rarely exists, and at frequencies above about 500 MHz, objects in the path between the antennas (walls, structures, people, terrain, etc.) may substantially alter both the effective radiation patterns and the polarisation.

Even if a device is located in a fixed position, polarisation will typically change with time due to movement of nearby objects. As a result, while some general attention shall be paid to radiation pattern shape and antenna polarisation, these parameters can be optimised for a particular situation in only a general way. Since indoor reception is commonly multipath reception (Rayleigh), an omni-directional or slight directivity is recommended. As for information, the DTT transmitter antenna in Malaysia is using horizontal mode.

The antenna directivity shall be measured as a minimum at the lowest, middle and highest frequency of the declared frequency band(s).

The indoor antenna should have a near to omni-directivity pattern as shown in Figure 4.

![Figure 4. Directivity antenna pattern](image)

5.2.7 Temperature range

Operating temperature range for consumer indoor antenna shall be within +15 $^\circ$C to +35 $^\circ$C.

An operating temperature is the temperature at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the device function and application context, and ranges from the minimum to the maximum operating temperature.
5.2.8 Electrostatic Discharge (ESD)

The discharge of ESD can affect the correct functioning of equipment. The charge is created by the friction of two materials, one of which is non-conductive. ESD interference derives its strength from the very short rise time (up to less than 1 ns), and the short duration (typically less than 100 ns) of a pulse in combination with a large current or voltage.

The device shall be protected with special components which leads the charge to ground to avoid component damaged by ESD. Mostly the components are assembled to the input and output of the device.

The device shall withstand contact discharges of 2 kV and 4 kV and air discharges of 2 kV, 4 kV and 8 kV with both polarities plus (+) and minus (-).

The ESD of indoor antenna shall withstand contact discharges of 2 kV and 4 kV and air discharges of 2 kV, 4 kV and 8 kV with both polarities plus (+) and minus (-).

Table 1. Summary of technical requirements for indoor DTT antenna

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Value/range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Operating frequency range</td>
<td>470 MHz - 694 MHz (UHF)</td>
</tr>
<tr>
<td>2.</td>
<td>Antenna gain, Gt</td>
<td>6 dBi - 20 dBi</td>
</tr>
<tr>
<td>3.</td>
<td>Noise figure</td>
<td>≤ 1.5 dB</td>
</tr>
<tr>
<td>4.</td>
<td>Output 3rd order intercept point, OIP3</td>
<td>≥ 30 dBm</td>
</tr>
<tr>
<td>5.</td>
<td>Return loss</td>
<td>≤ - 10 dB</td>
</tr>
<tr>
<td>6.</td>
<td>Antenna pattern directivity</td>
<td>The indoor antenna should have a near to omni-directivity pattern as shown in Figure 4.</td>
</tr>
<tr>
<td>7.</td>
<td>Temperature range</td>
<td>+ 15 ºC to +35 ºC</td>
</tr>
<tr>
<td>8.</td>
<td>Electrostatic discharge (KIV)</td>
<td>The ESD of indoor antenna shall withstand contact discharges of 2 kV and 4 kV and air discharges of 2 kV, 4 kV and 8 kV with both polarities plus (+) and minus (-).</td>
</tr>
</tbody>
</table>
Annex A
(normative)

Normative references

MS 406, Specification for voltages and frequency for alternating current transmission and distribution systems (Second revision)

MS 589-1, 13 A plugs, socket-outlets, adaptors and connection units - Part 1: Specification for rewirable and non-rewirable 13 A fused plugs (Third revision)

MS 1578, Specification for flat non-rewirable two-pole plugs, 2.5 A, 250 V, with cord, for the connection of class II-Equipment for household and similar purposes

MS IEC 60038, IEC standard voltages

IEC 60227-5, Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V - Part 5: Flexible cables (cords)

IEC 60245-4, Rubber insulated cables - Rated voltages up to and including 450/750 V - Part 4: Cords and flexible cables

IEC 61169-2, Radio-frequency connectors - Part 2: Sectional specification - Radio frequency coaxial connectors of type 9,52

BS 1363: Part 1, 13 A plugs, socket-outlets, adaptors and connection units - Part 1: Specification for rewirable and non-rewirable 13 A fused plugs

BS 6500, Electric cables. Flexible cords rated up to 300/500 V, for use with appliances and equipment intended for domestic, office and similar environments

BS EN 50075, Specification for flat non-wirable two-pole plugs 2.5 A 250 V, with cord, for the connection of Class II-equipment for household and similar purposes

ETSI EN 303 354, Amplifiers and active antennas for TV broadcast reception in domestic premises; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

IEC 61000-4-2, Electromagnetic compatibility (EMC) Part 4.2: Testing and measurement techniques—Electrostatic discharge immunity test
Annex B
(informative)

Testing procedures

B.1. Antenna gain

To determine the total antenna gain, the antenna with built-in amplifier is connected to the input of the network analyser through a 10 dB attenuator (see Figure B1). The gain flatness can be determined after gain measurement is completed.

In order to measure the field strength of the calibrated reference antenna, the following steps shall be followed:

a) Arranged all devices as illustrated in Figure B1.

b) Connect 10 dB attenuator to the reference antenna to avoid mismatches with the coaxial cable.

c) Both signal shall be connected to the network analyser which generates a sweep in the frequency range the AUT is specified.

d) The transmit antenna will transmit the signal to the reference antenna.

e) Values of the received signal which measured by the reference antenna shall be recorded.

f) Replace the reference antenna with the AUT then repeat steps specified in a) until e).

Figure B.1. Antenna gain measurement
B.2. Amplifier gain

To measure the amplifier gain, the amplifier is separated from the antenna. The amplifier input is connected to the network analyser’s output and the amplifier output is connected to the network analyser’s input (see Figure B2). The analyser’s output is set to a certain level so that the amplifier works in linear region. The sweep frequency range is set to 1 MHz - 1 000 MHz. The amplifier gain can be read out and saved in the analyser’s memory.

![Figure B.2. Amplifier gain measurement](image)

B.3. Noise figure (amplifier)

To determine the noise figure of the amplifier a measurement setup which consist of spectrum analyser and noise source as illustrated in Figure B3 shall be arranged.

In order to measure the noise figure, the following steps shall be followed (steps e) and f) are for noise measurement of the amplifier):

a) Calibrate the measurement setup.

b) Connect a noise source with a calibrated noise figure to the spectrum analyser.

c) The frequency shall be set in the operating frequency range of the antenna.

d) Measure the noise level.

e) The noise source shall be connected to the input of the amplifier.

f) A sweep shall be made in the same frequency range as in step c).

Note: The added noise in the circuit is the noise level of the amplifier Device Under Test (DUT).

g) All measurements shall be recorded.

![Figure B.3. Noise measurement](image)
B.4. Output 3rd Order Intercept Point (OIP3)

To determine the OIP3 of the amplifier, a measurement setup which consist of 2 units of signal generator, 2 units of 10 dB attenuator, a 20 dB attenuator, combiner and spectrum analyser as illustrated in Figure B4 shall be arranged.

In order to measure the noise figure, the following steps shall be followed:

a) Connect the outputs of two RF signal generators with a combiner after passing through a 10 dB attenuator. The attenuator is necessary to avoid coupling between the RF signal generators.

b) The combiner’s output shall be connected to the amplifier’s DUT input.

c) The DUT shall be connected to the spectrum analyser through a 20 dB attenuator to protect the spectrum analyser against overloading.

d) Set the RF signal generators to 1 MHz spacing (i.e. if signal generator 1 is at 500 MHz, then signal generator 2 shall be set at 501 MHz).

e) The amplified carriers with the IM products will be displayed on the analyser’s screen.

f) The software in the equipment will provide the value of OIP3 on the screen.

To get an overview of the OIP3 for the whole frequency band, it shall be measured in steps of 50 MHz.

![Figure B.4. OIP3 measurement](image)

B.5. Return loss

In order to measure the return loss, the following steps shall be followed:

a) Connect the antenna to a network analyser with built-in voltage/Vertical Standing Wave Ratio (VSWR) bridge.

b) The measuring port shall be first calibrated.

c) It shall be set to “Open”, “Short” and a “Load”.

d) The impedance of the load shall be matched with the impedance of the AUT.

e) Measure the return loss of AUT after calibrating the setup.
Acknowledgements

Members of the Multimedia Broadcast Receiver Sub Working Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts Mazlan Mahdi (Chairman)</td>
<td>MYTV Broadcasting Sdn Bhd</td>
</tr>
<tr>
<td>Ms Syaida Syarafina Sohaimi (Vice Chairman)</td>
<td>SIRIM Berhad</td>
</tr>
<tr>
<td>Ms Hafizah Zainal Abiddin (Draft lead)</td>
<td>SIRIM Berhad</td>
</tr>
<tr>
<td>Ts Mohammad Hafiz Halal /</td>
<td>Malaysian Technical Standards Forum Bhd</td>
</tr>
<tr>
<td>Mr Muhamin Mat Salleh (Secretariat)</td>
<td></td>
</tr>
<tr>
<td>Mr Muhd Kamarul Hafiz Mohd Tang</td>
<td>Sony EMCS Malaysia Sdn Bhd</td>
</tr>
<tr>
<td>Mr Sharad Sadhu</td>
<td>Fraunhofer IIS</td>
</tr>
<tr>
<td>Mr Mohd Suhairi Mohd Noor</td>
<td>LG Electronics (M) Sdn Bhd</td>
</tr>
<tr>
<td>Dr Mun Wai Yuen</td>
<td>Maxis Broadband Sdn Bhd</td>
</tr>
<tr>
<td>Mr Adrian Van Win Sen /</td>
<td>Measat Broadcast Network System Sdn Bhd</td>
</tr>
<tr>
<td>Mr Mohamad Isa Mohd Razhali /</td>
<td></td>
</tr>
<tr>
<td>Mr. Sheikh Azhar Sheikh Razak</td>
<td>Media Prima Berhad</td>
</tr>
<tr>
<td>Dr Ahmad Zaki Mohd Salleh /</td>
<td></td>
</tr>
<tr>
<td>Mr Asri Abd Rahman /</td>
<td></td>
</tr>
<tr>
<td>Mr Imaian Muzni /</td>
<td></td>
</tr>
<tr>
<td>Mr Mohd Sharil Duki</td>
<td></td>
</tr>
<tr>
<td>Ir Dr Lim Heng Siong</td>
<td>Multimedia University (MMU)</td>
</tr>
<tr>
<td>Mr Mohd Khairul Abdul Kadir /</td>
<td>MYTV Broadcasting Sdn Bhd</td>
</tr>
<tr>
<td>Mr Shamsul Najib Mohtar</td>
<td></td>
</tr>
<tr>
<td>Mr Navin Kumar /</td>
<td>Samsung Malaysia Electronics (SME) Sdn Bhd</td>
</tr>
<tr>
<td>Mr Zainuddin Mohd Zainon</td>
<td></td>
</tr>
<tr>
<td>Mr Chin Ket Ming</td>
<td>Sharp Electronics (M) Sdn Bhd</td>
</tr>
<tr>
<td>Mr Al Hafiz Bin Abu Bakar /</td>
<td>SIRIM Berhad</td>
</tr>
<tr>
<td>Ms Norhanisah Mohd Basri /</td>
<td></td>
</tr>
<tr>
<td>Ms Nurhafenah Abdul Jalil /</td>
<td></td>
</tr>
<tr>
<td>Mr Zul Jaafar</td>
<td></td>
</tr>
<tr>
<td>Mr Bertrand Pennachio /</td>
<td>SmarDTV Global S.A.S</td>
</tr>
<tr>
<td>Mr Erik Gazzoni</td>
<td></td>
</tr>
<tr>
<td>Mr Stephen Anthony Cleary</td>
<td>Sony EMCS Malaysia Sdn Bhd</td>
</tr>
<tr>
<td>Mr Najib Fadil Mohd Bisri @ Bisri</td>
<td>Telekom Malaysia Bhd</td>
</tr>
<tr>
<td>Mr Low Wei Yap</td>
<td>Wideminds Pte Ltd</td>
</tr>
</tbody>
</table>
By invitation:

Ts Amirah Jaafar Mad Ariff / Radio Televisyen Malaysia (RTM)
Mr Karim Sadiran /
Ts Khairuddin Hj Osman /
Ms Norhanim Yahya /
Mr Wan Ariffin Wan Hussin
Mr Sallehuddin Wagimen / Smart Digital International Sdn. Bhd. (Sirius TV)
Mr Mohd Fakhruzzaman Bin Mohd Noor
Mr Mohamad Hafizal Bin Mohamed Ariffin Al Hijrah Media Corporation (TV Alhijrah)